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A model is studied in the full range of all operational parameters of the unsteady plane flow 
of a power-law liquid induced by periodically variable pressure drop and oscillatory motion 
of the walls of a plane duct. Using the theory of similarity criteria of the asymptotic behaviour 
are formulated in four qualitatively different rheodynamic regimes. Corresponding asymptotic 
expressions are found for the degree of mechanical Iiquidization by the action of oscillatory 
shear stress superimposed on the principal steady state component. Theoretical results are il­
lustrated using a set of experimental data on the gravitational flow along a vertical oscillating 
sheet. 

Periodic longiditunal flows (PLF), kinematically delimited by the condition of longi­
tudinal symmetry: v, = 0, Vy = 0, Vz = v(t; x, y) and the condition of periodicity: 
v(t + 2n/w; x, y) = v(t; x, y), may be generated in long ducts or films with a free 
surface by the action of periodically variable external forces. A special case of PLF 
are oscillatory longitudinal flows (OLF) whose time-average velocities and ti~e: 
averaged external forces are zero. 

PLF's have been thus far studied primarily under the simplest geometrical configurations 
with axial symmetry (OLF in a circular tube l

-
8, general PLF's in a circular tube9 - 18, general 

PLF's in an annulus19) or with plane symmetry (PLF's in flat ducts and plane films20 - 22). 
More complex configurations have been studied only for OLF under the linear rheodynamic 
regime6

. 

The published papers on OLF's concentrate predominantly on the mathematically-theoretical 
aspects although applications to the viscom=try of viscoelastic liquids exist to03 ,4,7 ,8. In pa­
pers9 - 22 on general PLF's, in contrast, the technical aspect prevails, associated with the pos­
sibility of mechanicalliquidization of non-Newtonian materials23 - 27. Under the term of mecha­
nical liquidization we shall understand increased mean shear rate for a given mean shear stress 
or decreased mean shear stress for a given mean shear rate as a consequence of the superimposed 
oscillatory shearing component. 

The behaviour of rheologically complex materials undergoing PLF is a result of three physical 
factors: the character of the external periodic driving forces (steady versus the oscillatory com­
ponent), rheological properties of the material and the inertia of the material (affecting the me­
chanism of propagation of the shearing oscillations throughout the material). 

Rheological effects during PLF are fully represented by a scalar constitutive functional ex­
pressing the response of the material in terms of the shear stress to the deformation history under 
the conditions of the unsteady viscometric flow 28 . It is convenient to extract from this complex 
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description of the stress response the purely viscous response represented by the viscosity function 
of the steady viscometric flow and view the "rest" as a manifestation of time-dependent rheo­
logical properties (elasticity, thixotropy). Under PLF one can observe also wall effects as a con­
sequence of induced inhomogeneity of the material, which though has not been studied quantitati­
vely. 

For purely viscous materials the susceptibility to mechanical liquidization is quantitatively 
represented by the viscosity function9 ,10,12 -17,20 - 22,27. For viscoelastic materialsll ,18,19,24,26 
individual rheological effects cannot be separated as a matter of principle on the one hand, and, 
on the other hand, because the material constants appear both in the representation of the viscos­
ity function and the time-dependent properties. Experimental results on mechanicalliquidization 
during PLF (ref.9 ,13,16,20,21 ,27), however, strongly suggest that the principal constitutive cause of 
the ability for mechanicalliquidization is pseudoplasticity (the decrease of apparent viscosity with 
increasing shear stress under the conditions of the steady viscometric flow) of the tested poly­
meric systems. Viscoelastic time-dependent effects seem to have only secondary import­
ance 9 . 1 1.18.20,26. As a guide for the assessment of possible influence of time-dependent rheo­
logical phenomena on the degree of liquidization may serve the fact that for any linear constitutive 
model of viscoelastic behaviour the superimposed oscillatory components are without effect 
on the mean shear rate and stress. 

Another factor controlling the character of PLF and the degree of liquidization is the ratio 
of the oscillatory and the steady state component of the external forces of the process. This ratio 
may be generally characterized through the amplitude of the osciI1atory component and the 
steady component of the shear stress on the wall of the duct, C = To/,r •. It is obvious that for 
C <:; 1 the shearing oscillation shall be only secondary as far as the time-averaged characteristics 
of the flow are concerned, while for C ;:p 1 the effect of the superimposed oscillations may become 
dramatic . The majority of theoretical papers on viscoelastic PLF's are confined to the region 
of low values of C when the net effect of liquidization is not conspicuous (increased flow rate 
by 10 to 50%). This restriction in papers based on nonlinear viscoelastic models11.18,19,26 stems 
from the applied analytical method of asymptotic expansions with respect to a small parameter 
identified with the ratio of the oscillatory and steady state component of stress. 

The region of intermediate of the ratio To lTs has been explored thus far for the models of purely 
viscous behaviour IO ,12,13 ,15,16. In region of extremely high values of the To/T. ratio one can 
encounter a situation when the field of the oscillatory stress or the velocity field develops practically 
independently of the steady state component of the flow, i.e. becomes identical with the field 
of corresponding OLF's. Mechanical liquidization thus may be modelled by the field of ap­
parent viscosities, independent of the steady state component of the fiow 25 ,29,30. 

The extent of inertia effects strongly affects the degree of mechanical liquidization for the 
given periodic external forces. Principally one can distinguish creeping regimes of PLF's, where 
the effect of inertia as compared to the deformation forces is negligible, and, boundary layer 
regimes where the inertia effects are dominant. Under the creeping flow regime the effect of a given 
oscillatory component becomes manifest most10,12 ,13,21. Under the boundary layer regime 
the oscillatory component of the shear stresses is significant only within a thin shell of the material 
of thickness a in the close proximity of the wall, i.e. in region of the osciI1atory boundary 
layer2,6,31. 

Shearing oscillations in the material undergoing PLF may be generated by various technically 
plausible means: a) Relative osciI1atory motion of the walls with respect to one another. This 
way19 has been utilized predominantly in the rheometry26, although it may acquire also some 
technical use l9. b) Forced oscillations of the volume flow rate generated by piston pumps23,24. 
c) Oscillatory motion of the walls of the duct as a whole with respect to an inertial frame of rere-
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rence (vibrating flows)15 ,16,20 - 22,31. d) Oscillations of pressure drop with respect to an inertial 
frame of reference (pulsating flOWS)1 - 18. 

It is convenient to distinguish between kinematically generated PLF's (groups (a), (b) and 
corresponding combinations), and dynamically generated PLF's (groups (c), (d) and corres­
ponding combinations), for these two groups differ one from another both rheodynamically 
and from the application point of view. 

The greatest attention so far have attracted pulsating flows in a tube I - 18. In spite of the pro­
claimed technical applications23 .24 motivated by presumed energy savings during pulsation 
pumping of liquids, these papers remain largely academic. Aside from the unfounded concept 
that a superimposed oscillatory component of the stress should lead to reduced mechanical 
energy input, such a possibility would encounter also considerable technical difficulties associated 
with the purposely generated pressure shocks in a long pipe. In technical practice, on the con­
trary, ways are sought of subduing pressure pulsations generated by the action of piston pumps. 
The theory of pulsating viscoelastic flows thus would find a better use in design of necessary 
shock absorbers. 

From the technical point of view as far more attractive appears vibrating PLF where the oscil­
latory component of the stress is generated by the motion of the walls of the equipment with the 
aim to achieve a required flow rate for an apriori selected level of driving forces. By the vibra­
tionalliquidization one can often achieve technically significant gravitational flow of concentrated 
suspensions of viscoplastic character in packed equipment for contacting with gas, in siphon 
overflows, filtration, etc. Of importance for scanning and control of the flow of suspensions may be 
also the fact that the relation between the time-averaged volume flow rate and the time-averaged 
pressure drop in a vibrating duct approaches a linear dependence . Vibrational flows, unlike 
pulsating flows, has not been studied theoretically sufficiently extensively15 ,16,2I,22. Typical 
for their application is the relatively broad interval of operational parameters (cross section 
of the duct, amplitude and frequency of oscillations of the wall). 

In this study an attempt is made to formulate a qualitative rheodynamic theory 
of all dynamically generated PLF's (pulsating, vibrating and combined), between 
which an exact analogy exists32. Attention shall be focused on the observation of the 
rheodynamics of PLF's in the whole range of operational parameters which should 
lead to the formulation of asymptotic theories. In this effort we shall confine our­
selves to purely viscous non-Newtonian materials represented by the power law mo­
del of the viscosity function. In view of the fact that technical applications are per­
spective mainly in case of nonelastic highly viscous suspensions and because a more 
profound effect of viscoelastic properties on t,he degree of fluidization has not been 
proven to date, such an approach seems adequate. The power-law representation 
of the viscosity function substantially simplified the theoretical analysis of the problem 
from the viewpoint of the theory of similarity and with a cautious application of the 
mathematical model remains also adequate for the description of the real behaviour 
of purely viscous materials. 

For the sake of simplicity we shall confine ourselves to the case of PLF with plane 
symmetry which though possesses important applications in connection with the 
film flow and contacting of highly viscous non-Newtonian materials with gases 
(absorption, dehydration, demonomerization20 - 22) . . 
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Formulatioll of the Problem 

We shall be dealing with periodic longitudinal flows (PLF) of the power law liquid , 
generated dynamically by harmonic variations of external effects. We shall confine 
ourselves to cases with plane symmetry, i.e. to the flows in an infinite plane duct 
confined by walls in the planes x = 0 and x = 2h, and, to film flows on a plane 
wall at x = 0 with plane free surface at x = h. In an inertial frame of reference 
(primed quantities) the appropriate equation of motion may be written as 

Q a;v' = Qg~ - a~p' + a~ <x (1) 

where 

a~p' = P~ - P~ sin (wt') . (2) 

The waUs of the duct perform a longitudinal oscillatory motion with an instantaneous 
velocity 

v~ = a'w cos (wt' - ({Jo). (3) 

This PLF shall be examined in a new reference system32 (nonprimed quantities), 
performing with respect to the original inertial frame such a harmonic oscillatory 
motion that the apparent acceleration forces in the new system just balance the oscil­
latory component of pressure drop. With a suitable change oftime origin the harmoni­
cally oscillating velocity of the duct walls may be expressed with respect to the new 
frame of reference as 

Vw(t) = aw cos (WI) , (4) 

where 

(5) 

The equation of motion (1) takes in the new coordinates the form 

(6) 

where the parameter gz incorporates the effects of all steady external forces , gravity 
and pressure drop 

gz = g~ - p~/Q . (7) 

Since the inertial and the canonic frame of reference have a common mean position 
the resultant time-averaged volume flow rate in both systems is the same. The ob­
jective quantities28 (rates of deformation, stresses, dissipation) are clearly identical 
in both systems. The mathematical model of the considered process in terms of the 
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velocity field Vz = vet, x) is represented by the equation of motion (6), the constitutive 
model 

(8) 

and the boundary conditions. These determine the velocity on the oscillating wall 
according to Eq. (4) as 

v = Qwcos(wt); x = 0 (9a) 

the mirror symmetry of the velocity field, or the absence of force interaction in the 
x = h plane: 

O,v = 0 or r = 0; x = h (9b) 

and delimit the periodic character of the process 

vet + 2rr/w, x) = vet, x) . (9c) 

Brackets in Eq. (8) have been used to denote the odd power-law function: 

(10) 

This formal agreement shall be adherred to also in the following text. 

Normalized kinematic variables shall be introduced so as to avoid appearance 
of macroscopic parameters in the formulation of the boundary conditions for the 
problem: 

x = x/h, T= wt, V= v/(Qw). (lla,b,c) 

Substitution of these into Eqs (6), (8), (9a,b,c) leads to the model from the point 
of view of similarity invariant, in the form 

Re (OTV - Fr- 1
) = oxS (12) 

S = [oxVJn (13) 

VeT, X) !x=o = cos (T) (14a) 

S(T,x) !X=l = 0 (14b) 

(T + 2rr, X) = V( T, X) . (14c) 
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The mathematical model (12)-(14) contains, apart from the index of the flow, 
11 , two more independently variable criteria of rheodynamic similarity 

(15a) 

(16a) 

expressing characteristic conditions of the inertial forces, Qlww2 and oscillatory 
components of the viscous forces, K(awjh)n and the steady driving forces of the 
process Qgzh. 

For purely pulsating flows (a' = 0, P~ = Po, g~ = 0, P; = Ps) these criteria may be 
expressed from Eqs (5), (7) alternatively as 

(iSb) 

Fr = PojPs ' (16b) 

The exact solution of the mathematical model (12)-(14) has been known only 
for limiting values of the index of the flow, namely 11 = 1, when the mathematical 
model remains linear31

, and n = ° when the model reduces to the unidimensional 22 

one. For certain combinations of the parameters Re, Fr, asymptotic solutions have 
been known of a similar problem on PLF in a tube10

•
12

, which can be easily modified 
for the gi ven special case of the flow with plane symmetry. In the intermediate region 
of mean values of Fr, Re results have been known 20

•
21 of the numerical solution 

by the finite difference method for discrete values of the parameters Re, Fr. 

Ou r aim has been to study now the dynamics of the flow considered above in the 
full range of parameters Re, Fr with special attention to all asymptotic regions 
in the phase plane Re, Fr. 

It turns out that physically more instructive and from the standpoint of formula­
tion of asymptotic approximations more efficient appears to regard as the primary 
result of the solution the field of oscillatory stresses instead of the more commonly 
used field of velocities. This alternative approach shall be made more clear in the 
foIl owing paragraph. 

Mechanism of Liquidizalion, Levels of Stress 

A kinematic prototype of all PLF's is the simple periodic shear flow 

vz(t, x) = x y(t) , yet + 2rtjw) = yet) (17a,b) 
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where the instantaneous shear rate is independent of position . For a given periodi­
cally variable shear stress, T(T) = T(T + 211:), T = wt, of a steady component T. 

and amplitude of the oscillatory component To 

(i8a,b) 

where the normalized characteristic 4> satisfies the relations 

(j) = 0, 14>1;£ I , 4>(T + 211:) = 4>(T) (i9a,b ,c) 

the time-averaged shear rate, y, may be expressed for power-law liquids in the form 

(20) 

where 

The overbar (-) or the operator (.,tIT) of the time-averaging operation shall 
designate in the following equally as in Eqs (i9b) , (20) the time-averaged periodic 
functions with the period 211:: 

f
2" 

~ = Jt'T(~(T» = (21tt 1 0 ~( T) dT. 

As mechanically liquidizable generally appear all materials for which, after super­
imposing an oscillatory component Tv(T) on a given steady state component T., 
a corresponding increase of time-averaged shearing rate y appears . Clearly, for 
an arbitrary 4>(T) with the properties (i9a,b,c) and an arbitrary lin> 1, C#-O 
the folIowing inequality holds 

(22) 

All pseudoplastic materials are thus liquidizable, and the more so the lower the 
flow index. 

Provided 4>(T + 11:) = - 4>(T) one can find asymptotic representations of the func­
tional (20) in the form 

(23a,b) 
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where 

(24a) 

or 

ao = ~ !cJ>(T)!I /n I (24b) 
n 

As a special case for 

cp(T) = [cos (T)]m (25) 

we have 

as = ~ (~ - 1) r(m + 1/2) n- I / 2 , 

2n n r(m + 1) 
(26a) 

(26b) 

The course of the function f3(n, C) == AT([l + C cos (T))1/n) together with the 
asymptotic representations in Eqs (23a,b), is shown in Fig. l. 

The time-averaged mean velocity of the flow for a plane PLF may be expressed by 

(27) 

where, similarly as for the simple periodic shearing flow, we have 

(28) 

and the unsteady component of the stress may be expressed according to Eqs (6), 
(8), (9b) and (9c) explicitly in the form 

,.(x) = egih - x). (29) 

As a special case for a steady flow without the oscillatory component we have 

(30) 
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A practical quantitative criterion of the extent of liquidization under the PLF 
is the degree of liquidization I defined as the ratio of the time-averaged mean velo­
city Vm under the given conditions and comparable conditions without vibrations. 

For a plane PLF of a power-law liquid the degree of liquidization, I, may, thus be 
expressed from Eqs (27), (28), (29) and (30) as 

I = (lin + 2) J: .I(T([(t - X) + Fr a(T, x»)1/n) (1 - X) dX , (31) 

where the normalized oscillatory component of stress has been denoted by a(T, X) 

(32) 

It turns out that not only for the velocity field V(T, X) but also for the field of oscil­
latory stresses a(T, X) one can formulate a boundary value problem of parabolic 
type. From Eqs (13) and (I4a) the velocity field may be expressed in terms of stresses as 

V(T, X) = cos (T) + f)S]l/ n dX , (33) 

n 

10 

" " 

FIG . 1 

Function P(I/, C) 

C 10 

1 1/ = O·OS, 21/ = O' IS, 3 II = O' 30, 41/ = 
= O'S, 51/= 0·8. Solid lines represent exact 
courses, broken lines the asymptotes (26a,b). 

30rr----------.--------~. 

10 

FIG. 2 

Function x(1/) 

0'5 10 

Solid lines represent function in Eq. (75). 
broken lines asymptotes x :::::: (2 + 1/(211» . 
. (2'16n)3n, or x:::::: 3/(1 - n) - 2'S8, for 
n~ 0 (dash-and-dot-line) or for n~ 1 
(broken line). 
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where, according to Eqs (13), (29) and (32) we have 

S = Re Fr-l(l - X) + Re a. (34) 

Substitution of these expressions into Eq. (12) and some rearrangement leads to the 
following parabolic equations 

(35) 

The boundary conditions for a may be formulated in the form 

axa = - sin (T); X = 0 (36a) 

a = 0; X = 1 (36b) 

a(T + 21t, X) = a(T, X) . (36c) 

• For a known a(T, X) the kinematic quantities may be determined from Eqs (13), 
(31), (33), etc. 

Rheodynamic Regimes 

Compared to the common formulation of the rheodynamic models in terms of the 
velocity field the formulation in terms of oscillatory stress exhibits certain advantages. 

From the analytical standpoint it is interesting that the model of the flow in stresses 
has no singularities at the point S = 0 while for 0 < n < 1 corresponding velocity­
-based model these singularities clearly possesses. This is of consequence in the 
accuracy of integration by the finite difference method, utilizing essentially local 
representations of corresponding fields by Taylor series. As shall be seen, another 
advantage of the representation based on the equation of motion in stresses is the 
option of explicit formulation of asymptotic approximations. 

From physical point of view the model in stresses is more instructive as it imme­
diately indicates physical meaning of individual rheodynamic criteria of similarity 
in connection with the existence of a few qualitatively different rheodynamic regimes : 

The creeping flow regime, Re -+ 0 the field a(T, X) clearly has the asymptotic 
structures as follows 

a = (1 - X) sin (T) . (37) 
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The ratio of the oscillatory and the steady state stress, C, in this case is given ex­
plicitly by 

TO/Ts = Fr. (38) 

Boundary layer regime, Re -+ 00. Typical feature is a rapid decrease of the oscil­
latory stress with increasing distance from the wall, a~xalx=o = O(Re 1

/
n

) and inde­
pendence of the phenomena in the proximity of the wall on the overall thickness 
of the liquid layer, h. The structure of the model of the flow in region Re -+ 00 shall be 
studied in detail in the following. 

Apart from these classic regimes it appears useful to distinguish between two more 
asymptotic regimes according to the ratio of the steady and the oscillatory stress 
component. From asymptotic relations (23a,b) for the simple periodic shear flow it is 
apparent that if To/Ts = C ~ 1 the liquidization would remain only a secondary 
effect while in the opposite case, C ~ 1 the liquidization may become dramatic 
even in region of high values of Re. These two different situations have in the general 
case of PLF two characteristic asymptotic regimes with correspondingly simplified 
asymptotic models of the flows in terms of stress. 

The region of parameters Re, Fr for which Fr lal ~ 1 shall be designated as the 
regime of linear dynamics of oscillations. The non-linear parabolic equations (35) 
may be in this case linearized to the form 

and an explicit closed form solution 13 may be obtained. 
In region of the parameters Re, Fr, where, on the contrary Fr ~ 1, one may 

neglect the effect of the steady-state component of the stress on the structure of the 
field of oscillatory stress and Eq. (35) may be simplified to a form typical for the 
regime of pure oscillations 

(40) 

In the following we shall examine in detail the problem of four regimes, and 
localize corresponding regions in the phase plane (Re, Fr). 

Region of Low Re 

For the determination of the analytical approximation of the solution in region 
of low Re one can utilize the method of iterative integration in the form 

(41) 
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where, for instance, ao = O. For Re -+ 0 this recurrent formula leads to a functional 
expansion with respect to integer powers of the parameter (Re ' /

n
). 

As a special case 

a l = (1 - X) sin (T) - Re I/n l/n cos (T) IFr- ' + sin TI1 /n-I Fn(X), (42) 

where 

(43) 

For Re ~ lone thus can express the degree of liquidization in a simple form as 

I ~ 13(n, Fr) + O(Re1
/
n

) • (44) 

The Region 01 Linear Oscillations 

In region where lal Fr ~ 1, one can linearize with respect to a the expression 
[(Fr-'(1 - X) + a r/n and arrive at the linear model for a(T, X), see Eq. (39), 
(36a ,b,c). Substitution 

aCT, X) = sin (T) I.(X) + cos (T) le(X) 

reduces this linear model to an ordinary boundary value problem 

11(1 - x)' /n-I I. - M d~x/e = 0 

11(1 - x)l/n-1 Ie + M d~xfs = 0 

with the boundary conditions 

(45) 

(46a) 

(46b) 

(47) 

1.(1) = 0, le(1) = 0, dx le(O) = 0, dx Is(1) = -1 . (48a,b,c,d) 

The linearized formulation of the problem according to Eqs (46), (47) contains, 
for a given value of the flow index 11, a single variable parameter M. Let an a priori 
requirement regarding the accuracy of the linearization be given by the inequality 

(49a) 

where ao(T,X) is the solution of the linear problem (46), (47). The expression on the 
left hand side of Eq. (49) is clearly dependent on the parameter M only, and, con-
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sequently, one can always find for given M = const. such a small Fr for which 
the inequality (49) rewritten into the form 

Fr ~ e(n)/f(M) (49b) 
is fulfilled. 

For Re -+ 0 clearly the solution according to (46), (48) leads to the already known 
result (37) and the condition (49) of linearizability takes in this region the following 
form 

Fr ~ e(n) , Re -+ O. (50) 

For Re -+ 00 clearly the solution for X -+ 0 takes an exponential character 

(J:::::: c- I exp(-cX)sin(T- cX - rr/4) , (51) 

where 

c = (Mj2r /2 . (52) 

The condition of linearizability thus may be expressed in this region from Eqs (49) 
and (52) explicitly in the form 

(53) 

The course of the critical curve Fr = Fr.(Re) in region of intermediate valu~s 
of Re may be found only by solving the linear problem in the whole region of para­
meter M and by solving the set of Eqs (47), (49) just like carried out by Gianetto 
and Baidi JO for the case of pulsating flow in a tube. These authors, however, did not 
formulate corresponding asymptotic relations of the type (50) and (53) and there­
fore overlooked the existence of the linear region for Re -+ 0, Fr < e. 

From the standpoint of liquidization the regimes in region of the linear dynamics 
of oscillations lack importance, because, according to the praemisae the terms of the 
order I - 1 = 0(Fr2 (J2) are negligible for the required accuracy Fr2 (J2 = 0(£2). 

Quasi-Oscillatory Regimes 

In case of Fr- 1 = 0 the equation of motion (35) reduces identically to the form (40), 
corresponding to the case of pure oscillations with zero steady-state stress com­
ponent. The problem simplifies not only in that there remains only a single variable 
parameter, Re, but also in that the field of (J(T, X) takes two more symmetries with 
respect to the time variable. The first of these 

(J(T + rr, X) = -(J(T, X) (54) 
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halves the necessary integration region of the time variable for TE (0; 2rr) to TE (0; rr). 
The second has the character of the mirror symmetry 

a(To(X) + T, X) = a(To(X) - T, X) , (55) 

where, of course, one has to solve the complete problem in order to determine To(X) . 
This symmetry is useful as a check of, for instance, numerical solutions by the 
finite difference method. 

For Fr- I #- 0 one can speak of quasi-oscillatory regime for those regions 
of (Re, Fr) where the true course of the field a(T, X) does not deviate appreciably 
from that for Fr- I = 0, i.e . where existence of the non-zero steady-state component 
would not influence significantly the field of oscillatory stress. 

From Eq. (35) it is apparent that one of these quasi-oscillatory regions is the region 
of very low values of Re. As a special case, in the neighbourhood of Re = 0 the regu­
lar asymptotic representation (42) holds, according to which the steady state com­
ponent is represented by the term of the order O(Rel /n(1 + Fr- I )I /n-I). For finite Fr 
thus the effect of the steady-state component is of the order O(Re l /n) and for Fr -.. 0 
of the order (Re/Fr)I/n Fr. Excepting the last region, which is identical with the 
region of the linear dynamics of oscillations, then for Re ~ I the whole region 
Fr > 1 is the region of quasi-oscillatory regime. 

In region of intermediate and higher values of Re the purely oscillatory approxima­
tion may be justified in region where for the selected accuracy 6(11) one may write 

(56) 

On approximating the expression on the LHS by the first term of the binomial ex­
pansion we arrive at 

(57) 

where ao is for the given Re a solution of the purely oscillatory problem, Fr- I = O. 
From the inequality (57) it is apparent that for each Re there exists such an Fr that 
the oscillatory approximation leads to a satisfactory estimate of the field a ~ ao. 

In region where C = Fr(l - X) Max lal ~ 1, one can estimate I from the asymp­
totic representation (23b) with the result 31 

I ~ (1ln + 2) Fr1 / n- 1 {(1- X)I /n ..#T( lall /n-l)dX, 

where a = a(T, X; Re, n). 
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Boulldary Layer Regimes 

High values of Re may be achieved either by increasing the overall thickness of the 
material, h, or, by increasing the intensity of vibrations, characterized in the definition 
of Re by the complex (a l - nw2

-
n) or (pb-nwn). If at a constant steady state stress 

on the oscillating wall, Ts = Qgzh, h grows to infinity, the concept of the process 
near the wall as being independent of the thickness h becomes physically acceptable. 
The results for h --> 00, i.e. Re --> oc> for a given Fr, however, must have their cor­
responding physical interpretation of the normalized model even for the case when 
the growth of Re is achieved through the changes of intensity of oscillations. A uni­
fied approach offers again the theory of similarity. Instead of h one can choose 
another length scale of the problem, La 

(59) 

for the normalized description of the relevant physical field in terms of the normalized 
geometrical variable 

Y = xjLa = Rel/(l+n) X . (60) 

Substitution of this new independent variable and the new normalized oscillatory 

stress 

9 = TjTB = Rel/(l +n) (J , (.61) 

where 

(62) 

into the original model (34), (36) leads to a new set for the field 9(T, Y) as 

(63) 

ay 9 = -sin T; Y= 0 (64a) 

9=0; Y=H (64b) 

9(T + 2n, Y) = 9(T, Y) , (64c) 

where 

H = hjLB = Rel /(I+n), (65) 

(66) 

Collection Czechoslov. Chem. Commun. [Vol. 45][19801 
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This new normalization shows that for H -> 00, i.e. for Re -> 00, there exists 
an asymptotic solution, 90 , of the problem (63), (64) defined by the boundary value 
problem 

(67) 

8y 90 = - sin T; Y = 0 (68(1) 

90 -> 0; Y -> 00 (68b) 

(68c) 

where the ratio of the steady-state and oscillatory stresses is characterized by the 
parameter B. This asymptotic solution possesses a reasonable physical meaning 
for the region in the neighbourhood of the osciIlating waIl , i.e. for finite values 
of Yfor Re -> 00 . 

In region Re ~ 1 the usability of the purely oscillatory approximation is clearly 
constrained by the condition of the type 

(69a) 

and the usability of the linear approximation by the constraint of the type 

(69b) 

which is a condition which has been arrived at via different route in the part re­
garding linear approximations, see Eq. (54). 

The regimes in region Re -> 00 are looked upon as boundary layer ones owing 
to the fact that the amplitude of the oscillatory stress rapidly decays with increasing 
distance from the oscillating wall. As a special case for n = 1, Re -> 00, the exact 
solution of the problem (67) has been known in the form 

90(T, Y) = - exp(-cY)cos(T- cY+ 1[/4), c = 2- 1
/
2

. (70) 

For 0 < n ~ 1 the amplitude of the stress decreases again roughly exponentially 1 0.31 

and may be neglected outside the region of the boundary layer of thickness 

[) = A.(n) La (71) 

while approximately we can write31
-

34 A. ~ 4. 

Collection Czechoslov. Chern. Commun. iVol. 45] [1980J 
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From the standpoint of the structure of the velocity field for PLF in region of higher 
Re one can distinguish the region of the oscillatory boundary layer, the one being 
under the effect of the liquidazing oscillations, and the outer region of the steady 
flow without any appreciable effect of the oscillations. 

From the standpoint of liquidization the interesting region for Re ~ 1 is only the 
region of the quasi-stationary boundary layer, B- 1

, when, according to Eqs (60), 
(61), (67) and (70) one may write 

aCT, X) ~ { H -
I 

9o(T, HX) ; 
0; 

HX <). 

HX »,. 
(72) 

The degree of liquidization I, for Re -> 00, B ~ 1, l /n ~ 1 may be approximated 
according to Eqs (72) and (24b) as follows 

I = (!. + 2) lim fIAT([(1 - X) + B 9o(T, Hx)]l /n) (l - X) dX ~ 
n H~C() 0 

B I> I 

= 1 + H-1B I/n- 1 x(n) = 1 + x(n) (Fr Re-I /(I-n1»)I/n-1 , (73) 

where 

(74) 

The approximate values x( n) according to the results of the workJS may be expressed 
for 1/11 ~ 1 by the function 

x( n) ~ '------'--'---'-(1 + 2n) (1 + /1) ( (2r(lj2n) )2D/(1 +n) 

2n(1 - 11) (1 + 11) ~1tr(1/2n + 3/2) 
(75) 

whose course has been shown in semi-log coordinates in Fig. 2. 

DISCUSSION AND CONCLUSION 

The rheodynamic regime for PLF of power-law liquids for a given flow index n 
has been determined by the values of two independent rheodynamic criteria Re, Fr, 
i.e. by the position of the point (Re, Fr) in the phase plane shown in Fig. 3. 

From the view point of the analytical approximations it is useful to distinguish 
four typical regions in the phase plane (Re, Fr) marked in Fig. 3 by letters C, 8, L, 0: 

Collection Czechoslov. Chern. Commun. [Vol. 45] [1980] 
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The region of the creeping flow C for Re ~ 1, the boundary layer flow region B 
for Re ~ 1, the region of quasi-linear dynamics L for C ~ 1 and the region of quasi­
-oscillatory dynamics 0 for C ~ 1. The parameter C, indicating the ratio of the 
amplitude of the oscillatory and the steady stress in the proximity of the wall may be 
expressed asymptotically by the following relations 

C ~ { Fr for Re ~ 1 
FrRe-1 /(I+n) for Re~1. 

(76) 

Each of the given regions has its own corresponding asymptotic model of the 
flow with a single independently variable criterion of rheodynamic similarity. 
Summarily these data regarding the regimes C, L, B, 0 are given in Table I. 

In the corners of the phase diagram (Re, Fr) there are regions corresponding 
to four different asymptotic rheodynamic regimes: 

The creeping flow linear oscillation regime (CL) for Fr ~ 1, Re ~ 1, the boundary 
layer linear oscillation regime (BL) for Fr Re-1/(I+n) ~ 1, Re ~ 1, the boundary 
layer pure oscillation regime (BO) for Fr Re- 1

/ (1 +n) ~ 1, Re ~ 1 and the creeping flow 

pure oscillation regime (CO) for Fr ~ 1, Re ~ 1. Principal data on these regimes are 
summarized in Table II. 

The degree of liquidization, I, for pseudoplastic liquids n < 1, may take essentially 
arbitrarily high values. A maximum liquidization for a given Fr can be achieved 
for Re --+ 0 when 

lim l(Re, Fr) = p(n, Fr) . 
Rc ..... O 

TABLE I 

Basic Rheodynamic Regimes under PLF of Purely Viscous Materials 

Regime 

C 

0 

Condition 
of existence 

Re ~ 1 
Fr ~ 1 or 
B ~l 

Re~ 1 
Fr ~ 1 and 
B ~ 1 

Independent 
variable 

Fr 
M 

B 
Re 

Degree of liquidization 

fe(Fr) 

1 

1 + Re-1/(1+n) fo(B) 

Fr1 / n- 1 fo(Re) 

Collection Czechoslov. Chern. Cornrnun. [Vol. 45] [1980] 

Oscillatory 
wall shear 

stress 

Te 

TB 

(77) 

Depth of 
penetration of 

oscillations 
from the wall 

h 
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The course of this function has been shown in Fig. 1. Also for the (BO) regime one 
can find a simple explicit expression for I in the form 

liml(Re, Fr) = 1 + x(n)(Fr l - n Re - l/(l+n»)l /n , 
Re ..... oo 
B-oo 

(78) 

where the function x(n), approximately determined in Eq. (75) is shown in Fig. 2. 
Based on these asymptotic approximations the course of I(Re, Fr) for n = 1/3 is 

shown qualitatively in Fig. 4. In region of linear oscillations the quantity (I - 1) 
is very smalI, in the order of magnitude identical with the error of the linear approxi­
mation. A more precise data on the degree of liquidization I(Re, Fr, n) require 

TABLI! II 

Asymptotic Rheodynamic Regimes under PLF of Purely Viscous Materials 

Condition Wall stress Regime 
of existence characteristic 

Degree of liquidization 

CL Fr ~ 1 Ts 

Re ~ 1 

BL B ~1 Ts 

Re~ 1 

CO Fr ~ 1 't'c 

Re ~ 1 

BO B ~1 TB 

Re~ 1 

BL B 

IOgRef-___ -+ ___ --,L-ElJ_-I 

o o 

CL c CD 

-2L--~~-~O-~-bg-~-~2 

1 + O(Fr2) 

1 + O(B2) 

1 + Frl /n - 1 oAf T(lsin Til /n - I)" 

1 + x(n) Fr l /n- 1 Re 1 / (D+n 2
) 

FIG. 3 

Rheodynamic Regimes under Periodic Longi­
tudinal Flows in the Phase Plane (Re, Fr) 

Collection Czechoslov. Chern . Cornrnun. [Vol. 45] [1980) 
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numerical solution of the relevant mathematical models and have not been made 
available so far in the full range of parameters. For II = 1/3 Table III summarizes 
some numerical and experimental results20 on plane PLF's. The experiments have 
been carried out with the gravitational flow of suspensions in glycerol solution 

TABLE III 

Degree of Liquidization under the Film Flow of Kaoline Suspension in Water Solution of Glyce-
rol2o, n = 0'33. (l = 1420 kg m- 3 , down a Vertical Oscillating Plane Wall,cz = 9'81 m s - 2 

K / (l kinematic coefficient of consistency [m2 SO - 2]. Q intensity of irrigation [m2 s - 1]. ho film 
thickness under flow without vibrations [m], (J) angular frequency of the oscillations [rad s - 1]. 
o amplitude of the oscillations [m]. 

104K/ (l 106Q 104ho (J) 105
0 a b c 

m2 So-2 m2 S-1 m rad S-1 m Re Fr Ie xp Inurn Imax 

143 31 34 364 1-01 1'03 2'0 1'8 2·6 
19 1·38 2'56 6·2 6'4 10·8 

176 1·90 7·49 27'6 36'1 85 '2 
138 49 37 369 7 1·23 1'04 1-6 1-6 2·6 

38 2' 16 5'26 9-4 15·2 42'5 
137 48 36 251 11 0'86 0·71 1-4 1'3 1·8 

22 1'17 1-42 2'6 2·5 4·0 
56 1'59 HI 8·6 10'5 20·6 
92 1-83 5-94 17·8 23-9 53-9 

132 68 38 251 21 1'35 1'38 2'0 2·1 3'9 
56 1·84 HI 5'9 8·6 20'6 
99 2' 19 6·37 12'9 21-6 61·9 

133 68 38 440 12 2,20 2'41 2·6 3' 1 9·7 
44 3068 8·67 9·5 17·5 114 
81 4'62 16'0 19·2 40'5 385 

132 19 29 421 4 0·77 0'72 1'7 1·4 1'8 
43 1-65 7'70 39·7 17'4 90'0 

141 26 433 4 0·62 0'76 1·9 1-6 1'9 
19 0·89 3·44 23-0 16·3 18·8 
39 1·20 7' 11 63'5 57·3 76·8 

142 26 207 0·32 0·35 1'3 1,2 1·2 
27 0·57 1'17 3·2 2'6 3'0 
80 0·65 3·51 30·7 19·2 19'5 

120 114 30 377 22 2-85 3' 19 z.9 3' 5 16'3 
92 4·85 13 '3 12·0 25·3 266 

a IcIP experimental degree of liquidization, b Inurn degree of liquidization computed numerically20 
from the theoretical model Eq. (12)-(15). C Imax upper limit of the estimated degree of liquidiza-
tion for Re-+ 00, Eq. (44). 

Collection Czechoslov. Chern . Commun. (Vol. 45] (19801 
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on a vertical oscillating sheet. The agreement with the experimental data and the 
results of the solution of the corresponding parabolic problems in terms of velocities 
is satisfactory. Because, however, all 'experiments correspond to the region of inter­
mediate values of Re, Fr, none of the asymptotic representations is suitable for the 
correlation of the degree of liquidization. Empirically, these data may be correlated 
similarly as in case36 n = 0'15, in dependence on a single criterion (Re/Fr), see 
Fig.5. 

The possibility of mechanicalliquidization of pseudoplastic materials is technically 
interesting particularly in combination with the gravitational flow, i.e. liquidization 
by the oscillatory motion of the walls of the duct. The walls of the duct can be set 
into the oscillatory motion either by increased amplitude, which is technically limited 
to roughly millimeters, or, by increased frequency of the oscillations. The change 
of each of these parameters becomes manifest through the simultaneous change 
of the values of Fr and Re. Fig. 6 shows the trends of the variations of Fr, Re in de­
pendence on the variations of the process parameters Po, a or OJ . From the figure 
it is apparent that a gradual increase of a or OJ leads in either case to the region 
of high values of Re where the liquidization is less effective, usually into the region 
(80) in which, according to Eq. (78) we may write asymptotically (for given n, K, 
e. gzh) 

(79) 

From this relationship it is apparent that increasing OJ for n > 0'5 causes the degree 
of liquidization in region Re ~ 1 to decrease and hence that for a given a tnere 
exists a single optimum frequency of oscillations for which I reaches maximum. 

Based on the qualitative theory of mechanical liquidization one can summarize 
as follows: a) A feasible degree ofliquidization significantly increasing with decreasing 

~.A> 
FIG. 4 

d Degree of Liquidization in the Phase Plane 

10 
"0',,ij ,0 (Re, Fr) for n = 1/3 
/~ 

Reo /~/ ~ 
/. 

The figure shows the contours of constant 
5 /. liquidization (f I = 1· 5, 2 1= 5'0, 3 1= 50, 

/ 
./ ./: /. / 4 I = 500) according to the asymptotic ex-/'" / / 

./ 1/' / pression (77) for Re-+O (broken line), 
/ V 

/ 
( ( r": according to the asypmtotic expression (78) 

I 

1
3 ;: for Re-+ 00, B -+ 00 (dash-and-dot line) and 

1 
I according to the empirical correlation 1= 

0·5 
1 1 I = 1'83 (Fr/Re)1.86 obtained by processing I 
I 1 ! experimental data20 solid line), see also Ta-

10 Fr 102 ble III. 
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flow index as well as with increasing coefficient of consistency which allows a sufficient 
level of fo to be reached in region of low Re. In region of extremely low flow indices, 
say for 11 < 0·5 a plausible degree of liquidization may be characterized by I ~ 10 to 
106

• b) In region of high flow indices, say fori 11 > 0'8, mechanical liquidization 
cannot be expected to reach any technically significant level. 

Typical materials in case of which one can successfully utilize the principles 
of mechanicalliquidization are colloid dispersions of biological provenience and fine 
inorganic suspensions (pigments, clays) of viscoplastic character. 

The presented theory of PLF has been confined to rheodynamically stable regimes 
of purely viscous materials with the power-law representation of the viscosity 
function. It is thus restricted by numerous assumptions which in real configurations 
need not be met. 

The restriction to rheodynamically stable regimes reflects especially in that these 
regimes are presumably controlled by only two criteria, the oscillatory Fr and the 
oscillatory Re. The source of instabilities may be either instabilities of the steady 
state component of the flow, controlled by the criterion (v!/gzh) or the instabilities 
of the oscillatory component of the flow, controlled by the criterion (Qa 2w 2

-
n /K), 

or, instabilities of combined type. These criteria have not been incorporated into the 
presented analysis and cannot be expressed by any combination of Re and Fr. 

The assumption of the power-law representation of the viscosity function in itself 
is not a basic defect 17,27. One has to only bear in mind that the parameters K, n 
represent with sufficient fidelity the real course of the viscosity function in only 
a limited region of parameters. For a concrete utilization of the results of the theoreti­
cal model with the power-law representation of the viscosity function it is therefore 
necessary to determine K and 11 for the given real liquid on the basis of the viscosity 

FIG. 5 

Empirical Correlation of Data20 for 11 = 

= 0·33 
~ Data from the region Re < 1, () data 

from I < Re < 2, • data from Re > 2, 
o numerically generated data, see Table III. 
The straight line represents the equation I = 
= 1·83 (RejFr)1.86. 

102 

10 
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data from the interval of the shear stress corresponding to the maximum stress 
on the wall for the PLF under consideration. This characteristic stress may be 
estimated from 

Re> 1 

Re < 1 
(80) 

As a certain defect of the rheodynamic theories of PLF starting from constitutive 
models of purely viscous type is that they ignore time-dependent effects. Available 
experimental data on PLF of polymer systems exhibit fairly good agreement with 

logRe? 

FIG. 6 

,1 
/ 

./ 
:3 

( 
I 
I 
I 

/' 

logFr 

/2 
/ 

./ 

The Effect of Process Parameters Po, a and (j) on the Degree of Liquidization for a n = 0'1, 
b n = 1/3, ell = 2/3, d n = 0'9 

The contours I = const. for the boundary layer regime are shown by the dash-and-dot line, 
in the creeping flow regime by the broken lines Ii < 12 , Oriented straight lines show the course 
of Fr and Re for the case of increasing (j) at Po = const. (straight line 1), for the case of in­
creasing Po at (j) = const. (straight line 3), for the case of increasing a and (j) = const. (straight 
line 3) and for the case of increasing w at a = const. (straight line 2). 
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purely viscous theories; the viscoelastic effects seem to diminish somewhat the degree 
of I iquidization estimated according to purely viscous theories 11.20. However, one 
has to bear in mind that the available data cover a rather narrow section of the phase 
plane (Re, Fr) in the neighbourhood of the point Re = 1, Fr = 1. Theoretical 
papers on PLF of viscoelastic materials l -

s have been devoted so far exclusively 
to the asymptotic linear region C ~ 1 and do not therefore bring a desirable theoreti­
cal explanation of the effect of nonlinear viscoelastic effects on the degree ofliquidiza­
tion in the technically important region of parameters. 

It is surprizing that no attempt has been made so far to analyze thoroughly the 
nonlinear viscoelastic effects during the creeping flow regimes of PLF when, regardless 
of the rheological properties of the material, the oscillatory component of the stress 
may be expressed explicitly in the form 

(81) 

so that the degree of liquidization during an arbitrary PLF equals the degree of liqui­
dization under the corresponding simple periodic shearing flow with the amplitude 
of the shear eaaih and the mean (lgzh. 

LIST OF SYMBOLS 

a f

, a 
A = Fe Re- 1 

B = Fr Re- 1 / (1 +0) 

C= TO f Ts 

Fr = aw2 fgz 

g~ 
gz 
h 

ho 
H= hf La 

amplitude of the wall oscillations 

longitudinal component of gravitational acceleration 
effective steady-state mass acceleration 
hydraulic radius, film thickness 
film thickness free of vibrations 

K coefficient of consistency 
La = (Ke- Ja- 1 +nw-2+n)1/(1 +n) 

M= Fr J / o - J Re- J / n 

.IIt ( ) operator of time-averaging 
flow index 

pi, P isotropic pressure 
Po, Po amplitude of oscillatory component of pressure drop 
P~, p. steady-state component of pressure drop 
Q intensity of irrigation 
Re = (lh1 +na l-nw2- nK- 1 

S = [oxV]n= rK-1(awfh)-n 

1 time 
T=wt 
v, v longitudinal velocity 
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Vrn 

V= v/(aw) 
x',y', Z' 

x,y, z 
X= x/h 
y= x/Ln 

mean velocity of flow 

cartesian coordinates in an inertial frame of reference 
cartesian coordinates in canonic frame of reference 

Gto, Gt, parameters of asymptotic representation (23) 

pen, C) = J(T([J + Ccos T)l/n) 

o thickness of the oscillatory boundary layer 
X(II) function defined by Eq. (74) 
A = o/Ln 
w 

(1=1:./1:e 

frequency of oscillations 
density 

1: = T xz shear stress 
T, local steady-state stress 
1:0 local amplitude of oscillatory stress 
1:. field of oscillatory stress 
1:a = (K(qa 2w3/)1/(1 +n) 

Te = qaw2h 
¢(T) local normalized oscillatory stress 

Wein, Sobolik: 

designation of quantities in an inertial frame of reference 
operator of time-averaging 
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